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Abstract. We construct explicitly even and odd q-coherent states (qcss), which are proved 
to form a representation of the quantum Heisenberg-Weyl algebra. and study their proper- 
ties. It is shown that optical statistics properties of the even and odd qcss are very different. 
We find that an even qcs exhibits squeezing but no antibunching effect and an odd qcs 
has antibunching effect but no squeezing for all finite-q values. 

1. Introduction 

In recent years, much work has been devoted to quantum group versions of usual Lie 
(super) algebras, i.e. quantum groups [ 1-31, and their applications to integrable systems, 
inverse scattering problems and conformal field theory (see [4] and references therein). 
More recently coherent states of quantum algebras (qcss) have attracted a lot of 
attention due to their possible applications in various branches of physics and mathe- 
matical physics [6]. A q c s  of quantum Heisenberg-Weyl algebra (qHw.4) [l], which 
is an eigenstate of the q-boson annihilation operator, has been studied in great detail 
by many authors [l,  7-91 and its applications to some concrete physical problems 
[lo-121 have been explored. General css for quantum algebra SU,(2) [13] have also 
constructed, and extended to the quantum SU(2) superalgebra 1141. 

The conventional even and odd CSS [15] are two orthogonal eigenstates of the 
square of the boson annihilation operator. They form a complete Hilbert space, which 
is a representation of the HWA. It has also been shown that they are associated with 
non-classical properties of quantum light fields [16-181, and may play an important 
role in quantum optics [18, 191. Therefore it is useful to study the even and odd q-CSS. 

On the other hand, such an investigation may give some new insight into the problem 
of the physical meaning of the deformation parameter q, which is, until now, still 
unclear [20]. 

The purpose of the present paper is to construct the even and odd ~ C S E  and study 
their properties. Then we investigate their two important optical statistics properties- 
squeezing and aotibunching-in which we have in mind that the q-boson annihilation 
and creation operators represent a single mode of the q-electromagnetic field. 
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2. Even and odd coherent states 

As is well known, the conventional boson annihilation operator a, creation operator 
a' and identity operator I satisfy the commutation relations of the HWA: [a, a'] = 1. 
The corresponding number operator is defined by N = a'a, and has normalized eigen- 
vectors In) for the eigenvalues n = 0, 1,2, .  . . . 

The conventional even and odd css [15], denoted by 12). and lz), respectively, may 
be defined in the form, 

where z is a complex number and the normalization constants are given by 

N,(z) = (cosh(zf))-'/2 (2a) 

N,(z) = (sinh(z?))-"'. ( 2 b )  

From the definition of the even and odd CSS, it can be shown that they are eigenstates 
of the square of the annihilation operator, i.e. 

a21z)< = z21z), (3a)  

a2lz)?,= z'lz),. ( 3 6 )  

.(z'lz)o =o. (4) 

It is obvious that the even cs and the odd cs are orthogonal to each other 

However, the even css and the odd css are non-orthogonal. They satisfy the orthogonal- 
ity relations, 

e(z'lz)e = N.(z')N.( z) cosh( zZ') ( s a )  

& ' [ z ) ~  = N,(z')N,(z) sinh(z2'). ( 5 6 )  

The even css and the odd css can be transformed into each other by the action of 
the annihilation operator a, namely, 

alz). = z tanh-1/2(z3)lz)o (6a)  

alz),,= z coth-"2(zT)lz),. ( 6 b )  

This means that the annihilation operator a acts as a rotation operator between 12). 

and 1 ~ ) ~ .  
Although the even (odd) css cannot form a complete set, the even css together 

with the odd css constitute a complete Hilbert space, and satisfy the following complete 
relation, 

d2z e'-'"{cosh(z4)1z). .(zl+sinh(zZ)lz),.(zl}= I (7) v 

where the integral is taken over the entire complex plane, with d2z = d(Re z) d(Im z). 
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3. Even and add q-caherent states 

The qHwA [l]  is generated by q-creation operator U:, q-annihilation operator a, and 
a q-number operator N,.  These operators satisfy the commutation relations 

aqat,-qat,aq=q-N~ (8) 
(9) [ N , ,  a,] = -aq 

In what follows we shall concentrate on 0 < q < 1; the range 1 < q <CO then corresponds 
to the replacement qcfq-' throughout. The operators a,, U: and N, act in a Hilbert 
space with the basis In), (n = 0, 1 , 2 , .  . .), such that 

- t  [ N , ,  a ; ]=  a,. 

a,10), = 0 (10) 

where the q-factorial [ n],! = [ n ] , [ n  - 11,. . . [ 11, with the q-number 

Their actions on the basis vectors are given by 

u : I n ) , = d F q  In+ l), (13) 
aql 4, = m I n - 0,. (14) 

I = c In),,(nl. (15) 

The resolution of unity in the Hilbert space is written as 
m 

*=0 

We now define an even and odd qcs as 

12): = NE(z) cosh,(za;)lO), ( 1 6 ~ )  

I z ) i=  N i ( z )  sinh,(zat,)lo),. (16b) 
Where N i ( z )  and N z ( z )  are normalization constants to be determined, and we have 
introduced two q-functions, 

m X2n 

n=o [2n],! 
cosh,x=$(e;+e;^)= 1 - 

X2n+l 

sinh, x = f (e: -e;") = 
.=o[2n+lIq! 

where we have used the q-exponential function 

:2 rewrite t h  
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We require that the even and odd qcss are normalized in the form, 

;(zlz);= 1 (20a) 

:(zIz):= 1. (206) 

N:(z)  = (coshq(zT))-"2 @ l a )  

N z ( z )  = (sinh,(zZ))-"*. (216) 

&+): = N",z')NG(z) cosh,(zi') (22a) 

z(z'Iz)i= N:(z')N:(z) sinh,(zi') (226) 

;(z'Iz):=o. (22c) 

Then, the normalization constants are given by 

From equation (19) it follows that 

This means that the even (odd) qcss are non-orthogonal; however, the even qcsr and 
the odd ~ C S E  are orthogonal to each other. 

As is well known, the core of such a system for css is their completeness. In the 
present case, it can be shown that the even (odd) qcss do not form a complete set. 
However, the even qcsr together with the odd qcss build a complete Hilbert space. 
Furthermore their complete relation holds in the following form, 

where d iz  = r d,r dB with z = reie, so the integral over the variable r is a q-integration 
[8,9] while the integral over di3 is a normal integration. 

Proof: Substituting (19) and (21) into (23), the left-hand side of (23) may be written as 

"2"+l~Z.-zm+l -l 

where we have used the q-Euler's formula for r ( x )  function [8] 

l a rd ,x  e;xxm =[RI,!  (24) 

where J is the largest zero of the q-exponential function e;". Note that this q-Euler 
formula is different from the one found in [23]. 
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With the help of (14) and (19),  one can obtain 

ai1.z); = z21z)E (25a)  

a$z):= ~'IZ);. (256)  

This means that 12); and 12); are two orthogonal eigenstates of the square of the 
q-annihilation operator. 

From (14) and (19),  it is straightforwatd to obtain 

where 

coth, x = 
e:-eg" 

so that the even and odd qcss can be transformed by the action of the q-annihilation 
operator a,. 

As a consequence of equations (23) and (26),  the even and odd ~ C S S  together give 
rise to a representation of the qHwA. 

Finally, let us ObSeNe the relation between the even and odd qcss, and the 
Glauber-type qcs [6-91 defined by 

where the normalization constant is given by 
22 -1 /2 N,(z)=(e,) . 

From equations (19) and (27) it follows that 

12): = fN,'(z)N:(z)(lz),+ I+,) 
12): = fNi'(Z)N:(Z)(IZ),- I-z),) 

which indicate that the even and odd qcss can be expanded nonlinearly in terms of 
the Glauber-type qcss. Apparently, the even and odd qcss, and the Glauber-type qcss 

are non-trivially different. 
As expected, the even and odd qcss become the conventional even and odd css in 

the limit q + l .  

4. Optical statistics properties of the even and odd ~CSS 

In this section, we shall investigate some optical statistics properties of the even and 
odd qcss conceming quantum mechanical effects of light, squeezing and antibunching 
properties. 
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In analogy with the definition of squeezing for the conventional single mode of 
the electromagnetic field [21]  we introduce the q-squeezing for the q-electromagnetic 
field, assumed to be expressed in terms of the q-annihilation and creation operators 
U,, a i  in the standard way 

xf = t ( u i +  a,) ( 3 1 ~ )  

(316)  

[X, X4I-L’ -21 [aq ,aq l  t (32)  

x; =$(a,- t U,). 

These operators obey the commutation relation 

and as a result, satisfy the uncertainty relation 

((AX~)’)((AX;)’j~~l([X~, X4l)l’ ( 3 3 )  

where the variance ((AX?)’) is defined as ((AXP)2)=((Xq)z)-((XP))2 (1’=1,2). 
We will call a state q-squeezing in the Xq variable if 

,((AXf)’), <$l,([Xf, X;l),l (34)  

and similarly for X ; .  

From equations (13) ,  (14) and (19) ,  one may get 
We now calculate the various expectation values appearing in the above equations. 

E(zIu:u,[z)G= z.? tanh,(zi) 

G(zla,a~lz)’,=qz~tanh,(zi)+ 

:(zIu:u,Iz):= z.? coth,(z.?) 

:(z1uqa$)i = qzT coth,(zT)+ 

:(zI(ai+ uF)Iz)z= :(zl(u?,+ uy)Iz):= z ’ + ~ ’  

~ ( z l a $ z ) t  =:(zlu:lz)i = 0. 

:(zlxflz):, = o  

cosh,(q“zT) 
cosh,( zT) 

sin&( q-‘zf) 
sinh,( z.?) 

From the above it follows that 

1 cosh,(q-’r’) 
4 cosh,r’ &l(X:)’lz)t =$.’{cos 28+;( 1 +q) tanh, r’}+- 

:(zlxqlz):=o 
1 sinh,(q-’r2) 
4 sinh, r2 

:(zl(X:)’iz)i =$r2(cos 28+4( 1 +q) coth, r2)+- 

so that 

1 cosh,(q-’ r2) 
4 cosh, r2 

1 sinh,(q-‘ r’) 
4 sinh, r2 

G(z[(AXf)’[z)E = $r’{cos 28 + f (  1 + q) t a n k  r’} +- 

:(zl(AX?)’[z)i =4r2{cos 28 +$( 1 +q) coth, r2)+- 

where we have taken z = re“. 
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Similarly, one can get the variances in X;l, 

(44) 
E(zl(AX;)’lz)G = -$r’{cos 2 8 - f ( l  +q) tanh, r2}+- 1 cosh,(q-’ r’) 

4 cosh,? 

(45) 
1 sinh,(q-’ ?) 

:(~l(AX:)~lz): =$.’{cos 20 +f(l +q) coth, r2}+- 4 
sinh, r2 

and 

To analyse q-squeezing properties, we consider 

~ ( ~ l ( A X ~ ) ~ l z ) ~  -flG(zl[X;l, Xg]lz)Gl= fr2{cos 28 + tanh, r’} 

z(~l(AXq)~1z)z-flz(zl[X4, X;l]lz)’J =fr2{cos20+coth, r2}. (49) 

~(z l (Ax~)’ l~)~<f l~(~I [X;I ,  X2llz)~l (50) 

(48) 

Because of tanh, r2 < 1, equation (48) shows that the following inequality holds 

when 28 is in the range ($71, v) .  
From the above it is seen that with respect to the even ~ C S S  there is squeezing for 

all finite-q values, in particular, including the q = 1 limit case. This is very different 
from the case of the Glauber-type qcss [lo] in which no squeezing occurs in the q =  1 
limit. 

Equation (49) leads to 

:(zl(AX;l)21z)G> az(zIM4, X$llz)zl (51) 

where we have used coth, r2> 1. This indicates that with respect to the odd qcss no 
squeezing occurs for all finite-q values. 

Finally, we investigate the antibunching effect of the even and odd ~ C S S .  As is well 
known, if the normalizedsecond-order correlation function of a light field [22] g‘2’(0) < 
1, one says the light field exhibits antibunching effect. In a similar way, we introduce 
the second-order qcorrelation function for the q-light field 

It is straightforward to evaluate the second-order q-correlation function for the 
even and odd qcss, respectively, 

gZ)(O) = coth, r2 (53) 

gg(0) = tanh, ?. (54) 

Because of tanh,r2< 1 and coth,r2> 1 for all finite-q values, gtd(0) > 1 and gg(0) < 1. 
This means that the odd qcss exhibit antibunching effect but the even qcss do not for 
all q values. 
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5. Concluding remarks 

We have constructed the even and odd q c s r  and discussed some of their properties. 
Although the even (odd) qcss  cannot consist of a complete set, the even qcss  together 
with the odd qcss  form a complete Hilbert space. From a mathematical point of view, 
this Hilbert space is a representation space of the qHwA. The even and odd qcss 

therefore give rise to a new representation of the ~ H W A .  We have also investigated 
optical statistics properties of the even and odd qcss,  and found that with the even 
q c s s  squeezing may occur but there is no antibunching effect, however, for the odd 
q c s s  there is antibunching but no squeezing for all finite-q values. It has been shown 
that the deformation parameter q may be a parameter relevant to the degree of squeezing 
and antibunching. 
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